As outcomes, Year 2 pupils should, for example:
Understand, use and begin to read:
one each, two each... share, halve, divide,
left over, divided by... equal groups of ...
and read and write the division sign \div.
Understand the operation of division as:

- sharing equally: for example,

6 sweets are shared equally between 2 people.
How many sweets does each one get?

- grouping, or repeated subtraction: for example, There are 18 apples in a box. How many bags of 3 apples can be filled? Count from zero in tens, for example, to 60. How many tens did you count?

Interpret $8 \div 2$ as 'how many 2 s make $8 ?^{\prime}$

Respond rapidly to oral or written questions phrased in a variety of ways, such as:

- Share 18 between 2 .
- Divide 6 by 3 .
- How many tens make 80 ?
- How many sticks of 4 cubes can you make from a stick of 20 cubes?
- How many $£ 2$ coins do you get for $£ 20$?
- How many 2 cm lengths can you cut from 10 cm of tape?

Record simple simple mental divisions in a number sentence using the \div and $=$ signs.

Recognise the use of symbols such as \square or \triangle to stand for unknown numbers, and complete, for example:

- with rapid mental recall:

$$
6 \div 2=\square \quad 20 \div \square=2 \quad \square \div 10=3
$$

- using counters (for sharing) or a number line (for repeated subtraction), then mental strategies, explaining method:

$$
\begin{aligned}
& 16 \div 4=\square \quad 24 \div \square=6 \quad \square \div 3=8 \\
& 70 \div 10=\square
\end{aligned}
$$

As outcomes, Year 3 pupils should, for example:

Use, read and begin to write:
share, halve, divide, divided by...
equal groups of... the sign \div, and understand that $1 / 2$ means one divided into two equal parts.

Understand division (see Year 2) as:

- grouping, or repeated subtraction, including interpreting, for example, $35 \div 5$ as 'how many 5 s make 35?'
- sharing.

Know that dividing a whole number by 1 leaves the number unchanged: for example, $12 \div 1=12$.

Understand that $16 \div 2$ does not equal $2 \div 16$.
Understand that division reverses multiplication (division is the inverse of multiplication).

Solve division calculations by using multiplication strategies. For example:

- Calculate $18 \div 3$ by counting how many hops of 3 on a number line are needed to reach 18.
- Solve $20 \div 4$ by interpreting this as 'How many fours make 20?'

Respond rapidly to oral or written questions phrased in a variety of ways, such as:

- Share 18 between 2 .
- Divide 25 by 5 .
- How many fives make 45 ?
- How many 5 p coins do you get for 35 p?
- How many lengths of 10 m can you cut from 80 m of rope?
- Is 35 a multiple of 5 ?

Record simple mental divisions in a number sentence using the \div and $=$ signs.

Recognise the use of symbols such as \square or \triangle to stand for unknown numbers, and complete, for example:

- with rapid mental recall:

$$
16 \div 2=\square \quad 30 \div \square=6 \quad \square \div 5=7
$$

- using counters (for sharing) or a number line (for repeated subtraction), then mental strategies,
explaining method:

$$
\begin{array}{lll}
16 \div 4=\square & 24 \div \square=6 & \square \div 3=8 \\
26 \div 2=\square & 24 \div \square=12 & \square \div 10=8
\end{array}
$$

Interpret 'in every' situations as division calculations. For example:

- A baker bakes 24 buns. She puts 6 buns in every box. How many boxes of buns can she fill?
- William has made a pattern using 12 tiles. One tile in every four is red. How many tiles are red?

