As outcomes, Year 5 pupils should, for example:
Make general statements about odd or even numbers and/or give examples that match them.

For example, explore and give some examples to satisfy these general statements:

- the sum of three even numbers is even;
- the sum of three odd numbers is odd;
- the difference between one odd and one even number is odd;
- the difference between two odd or two even numbers is even.

Use, read and write, spelling correctly:
multiple, digit, divisible, divisibility, factor...

Recognise multiples in the 6, 7, 8, 9 times-tables, and in the 11 times-table to 99.
Respond to questions such as:

- Ring the numbers in the box that are divisible by 7 (or have a factor of 7).

3	18	21	27	36	42	56

- A line of counters is set out in a pattern: two white, four blue, two white, four blue... What colour is the 49th counter? What position in the line is the 11th blue counter?

000000000000000000

- Use a number grid computer program to highlight and explore multiples on different sizes of grid. Describe and explain the patterns produced.

Recognise multiples of more than one number: for example, multiples of both 2 and 3.

Recognise that a whole number is divisible by:
100 if the last two digits are 00;
10 if the last digit is 0 ;
2 if its last digit is $0,2,4,6$ or 8 ;
4 if the last two digits are divisible by 4;
5 if the last digit is 0 or 5 .
Use this knowledge to work out, for example, that the year 2004 is a leap year because 2004 is divisible by 4.

As outcomes, Year 6 pupils should, for example:

Make general statements about odd or even numbers and/or give examples that match them.

For example, explore and give some examples to satisfy these general statements:

- the product of two even numbers is even;
- the product of two odd numbers is odd;
- the product of one odd and one even number is even;
- an odd number can be written as twice a number plus one (an example is 21 , which is $2 \times 10+1$).

Use, read and write, spelling correctly:
multiple, digit, divisible, divisibility, factor...

Recognise multiples to at least 10×10.
Respond to questions such as:

- Ring the numbers in the box that are divisible by 12 (or have a factor of 12).

24	38	42	60	70	84	96

- A line of counters is set out in a pattern: five white, four blue, five white, four blue... What colour is the 65th counter? What position in the line is the 17th blue counter?

000000000000000000

- Ring the numbers that are divisible by 7 .

210	180	497

Find the smallest number that is a common multiple of two numbers such as:

8 and 12
12 and 16
6 and 15

Recognise that a whole number is divisible by:
3 if the sum of its digits is divisible by 3;
6 if it is even and is also divisible by 3;
8 if half of it is divisible by 4 , or if the last three digits are divisible by 8 ;
9 if the sum of its digits is divisible by 9 ;
25 if the last two digits are $00,25,50$ or 75 .
See also tests of divisibility (page 73).

