Pupils should be taught to:

Use letter symbols and distinguish their different roles in algebra

As outcomes, Year 7 pupils should, for example:

Use, read and write, spelling correctly: algebra, unknown, symbol, variable... equals... brackets... evaluate, simplify, substitute, solve... term, expression, equation... squared... commutative...

Reinforce the idea of an **unknown**. Answer questions such as:

- 5 + □ = 17
- $3 \times \square 5 = 7$
- $\nabla + \Phi = 4$. What numbers could ∇ and Φ be?
- The product of two numbers is 24. What could they be?

Know that letters are used to stand for numbers in algebra. Begin to distinguish between different uses of letters. For example:

 In the equation 3n + 2 = 11, n is a particular unknown number, but in the equation a + b = 12, a and b can take many different values.

Recognise algebraic conventions, such as:

- $3 \times n$ or $n \times 3$ can be thought of as '3 lots of n', or n + n + n, and can be shortened to 3n.
- In the expression 3n, n can take any value, but when the value of an expression is known, an equation is formed, i.e. if 3n is 18, the equation is written as 3n = 18.

Understand the meaning of and begin to use simple expressions with brackets, e.g. 3(n+2) meaning $3 \times (n+2)$, where the addition operation is to be performed first and the result of this is then multiplied by 3.

Use the equals sign appropriately and correctly.

- Recognise that if a = b then b = a, and that a + b = c can also be written as c = a + b.
- Avoid errors arising from misuse of the sign when setting out the steps in a calculation, e.g. incorrectly writing 38 + 29 = 38 + 30 = 68 - 1 = 67

Use letter symbols to write expressions in meaningful contexts. For example:

add 7 to a number n+7subtract 4 from a number n-44 minus a number 4-n

a number multiplied by 2 $(n \times 2) + 5$ or 2n + 5 and then 5 added

a number divided by 2 $n \div 2$ or n/2

a number plus 7 and then $(n + 7) \times 10$ or 10(n + 7)

multiplied by 10

a number multiplied by itself $n \times n$ or n^2

Understand the difference between expressions such as:

2n and n + 2 3(c+5) and 3c+5 n^2 and 2n $2n^2$ and $(2n)^2$

Link to formulating expressions and formulae (pages 122-5).

112 Y789 examples © Crown copyright 2001