As outcomes, Year 8 pupils should, for example:

Substitute positive and negative numbers into linear expressions and positive integers into simple expressions involving powers.

For example:

- Find the value of these expressions when a = 4. $3a^2 + 4$ $2a^3$
- Find the value of these expressions when x = 2.5. 4x + 3 2 - 3x 7(x - 1)
- Find the value of y when x = -3. $y = \frac{2x + 3}{x}$ $y = \frac{x - 1}{x + 1}$
- Use a short **computer program**. For example:

10 CLS	TO EXPRESSION :A :B
20 INPUT A	MAKE "C 6*:A-2*:B
30 INPUT B	PRINT :C
40 C = 6*A-2*B	END
50 PRINT C	
60 PRINT	

Find different ways of inputting different values for A and B to print a particular value for C. Try different formulae.

 Use a spreadsheet to explore what happens when different values are substituted in an expression. For example:

	Α	В	С	V
1	-3	7	=A1*A1-B1	
2	-2	2	=A2*A2-B2	
3	-1	8	=A3*A3-B3	
4	0	-3	=A4*A4-B4	
5	1	1	=A5*A5-B5	
6	2	-4	=A6*A6-B6	
7	3	5	-Δ7*Δ7-R7	

 The number of diagonals in a polygon with n sides is given by the expression

How many diagonals are there in a polygon with 20 sides?

 In this magic square, choose different values for m, p and q and substitute them.

m – p	m+p-q	m+q
m+p+q	т	m – p – q
m – q	m – p + q	m + p

What values for m, p and q will give a magic square filled with the numbers 1 to 9?

As outcomes, Year 9 pupils should, for example:

Substitute positive and negative numbers into linear expressions and expressions involving powers.

For example:

- Find the value of these expressions $3x^2 + 4$ $4x^3 2x$ when x = -3, and when x = 0.1.
- Find the values of a and b when p = 10.

$$a = \frac{3p^3}{2}$$

 $b = \frac{2p^2(p-3)}{7p}$

• A triangle of matches is made like this.

If the triangle has $\ensuremath{\mathsf{R}}$ rows, the number of matches needed is

$$\frac{1}{2}$$
(3R² + 3R)

How many matches are needed for a triangle with 17 rows?

A sphere with diameter 3.6 cm is made using clay.
The volume of a sphere is

$$\frac{\pi d^3}{6}$$
, where d is the diameter.

Work out the volume of clay in the sphere. Give your answer to a sensible degree of accuracy.

More clay is used to make this shape, a torus, with radii a = 4.5 and b = 7.5.

Its volume is $\frac{1}{4}\pi^2(a+b)(b-a)^2$. Work out the volume of clay used.

Here are two formulae.

$$P = s + t + \frac{5\sqrt{(s^2 + t^2)}}{3} - A = \frac{1}{2}st + \frac{(s^2 + t^2)}{9}$$

Work out the values of P and A when s = 1.7 and t = 0.9.