As outcomes, Year 8 pupils should, for example:

Use vocabulary from previous year and extend to: sign change key...

Know how to:

- Use the sign change or ⁺/- key where appropriate.
- Use the memory and/or bracket keys, and select the correct key sequence to carry out complex calculations.
- Key in fractions, recognise the equivalent decimal form, and use this to compare and order fractions.
- Use the fraction key, including to enter time, e.g. 3 hours 25 minutes = 3^{25} % hours.
- Use the cube and cube root keys, if available.
- Consider the approximate size of an answer before and after a calculation and, where necessary, check it appropriately.

Use a **calculator** to evaluate correctly complex expressions such as those with brackets or where the memory function could be used.

For example:

Use a calculator to work out

$$4 \times (6.78)^2$$

Know how to:

- Recognise recurring decimals when they are rounded on the calculator, e.g. 2 ÷ 3 is displayed as 0.666 66667.
- Recognise that if, for example, $\sqrt{3}$ is shown to be 1.732051 then $(1.732051)^2 \approx 3$.

Link to rounding numbers to one or two decimal places (pages 42-5), converting fractions to decimals (pages 64-5), working with integers, powers and roots (pages 48-59).

As outcomes, Year 9 pupils should, for example:

Use vocabulary from previous years and extend to: constant... reciprocal...

Know how to:

- Use the constant, π , sign change, power (x^{γ}), root and fraction keys to evaluate expressions.
- Use the reciprocal key ($\frac{1}{x}$).

For example:

- Add on 101 repeatedly using the constant key. How long is the digit pattern maintained? Explain why.
- Find the circumference of a circle with radius 8 cm to two decimal places.
- Calculate 6^7 , $\sqrt[4]{625}$, $\sqrt{(57.6)/_{\pi})}$, $\sqrt{(15.5^2 3.7^2)}$.
- Use a calculator to work out the answer as a fraction for $\frac{12}{19} + \frac{17}{22}$.

Use a **calculator** to evaluate more complex expressions such as those with nested brackets or where the memory function could be used.

For example:

• Use a calculator to work out:

a.
$$\frac{45.65 \times 76.8}{1.05 \times (6.4 - 3.8)}$$

c.
$$\{(4.5)^2 + (7.5 - 0.46)\}^2$$

b.
$$4.6 + (5.7 - (11.6 \times 9.1))$$
 d. $\frac{5 \times \sqrt{(4.5^2 + 6^2)}}{3}$

d.
$$\frac{5 \times \sqrt{(4.5^2 + 6^2)}}{3}$$

Understand how a **scientific calculator** presents large and small numbers in standard form, linking to work in science.

Link to multiplying by powers of 10 and writing numbers in standard form (page 39).

Use a calculator to investigate sequences involving a reciprocal function, such as:

$$x \rightarrow \frac{1}{x-1}$$

Link to reciprocals (pages 82-3).

Link to rounding numbers to one or two decimal places (pages 42-5), converting fractions to decimals (pages 64-5), working with integers, powers and roots (pages 48-59).

109 © Crown copyright 2001 Y789 examples