ALGEBRA

Pupils should be taught to:

Generate points and plot graphs of functions

As outcomes, Year 7 pupils should, for example:

Use, read and write, spelling correctly: coordinates, coordinate pair/point, x-coordinate... grid, origin, axis, axes, x-axis... variable, straight-line graph, equation (of a graph)...

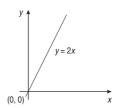
Generate and plot pairs of coordinates that satisfy a simple linear relationship. For example:

- y = x + 1 (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), ...
- y = 2x (0, 0), (1, 2), (2, 4), (-1, -2), (-2, -4), ...
- y = 10 x (0, 10), (1, 9), (2, 8), ...

Complete a table of values, e.g. to satisfy the rule y = x + 2:

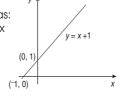
Х	-3	-2	-1	0	1	2	3
y = x + 2	-1	0	1	2	3	4	5

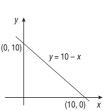
Plot the points on a coordinate grid. Draw a line through the plotted points and extend the line. Then:


- choose an intermediate point, on the line but not one of those plotted;
- read off the coordinate pair for the chosen point and check that it also fits the rule;
- do the same for other points, including some fraction and negative values.

Try this for other graphs.

Recognise that all points on a line will fit the rule.


Begin to consider the features of graphs of simple linear functions, where y is given explicitly in terms of x. For example, construct tables of values then use paper or a **graph plotter** to:


• Plot and interpret graphs such as: y = x, y = 2x, y = 3x, y = 4x, y = 5x

Note that graphs of the form y = mx:

- are all straight lines which pass through the origin;
- vary in steepness, depending on the function;
- match the graphs of multiples, but are continuous lines rather than discrete points.
- Plot graphs such as: y = x + 1, y = 10 x

Note the positive or negative slope of the graph and the intercept points with the axes. Make connections with the value of the constant term.

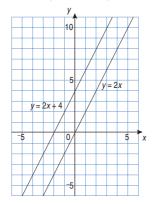
As outcomes, Year 8 pupils should, for example:

Use vocabulary from previous year and extend to: linear relationship...

intercept, steepness, slope, gradient...

Generate coordinate pairs and plot graphs of simple linear functions, using all four quadrants. For example:

- y = 2x 3 (-3, -9), (-2, -7), (-1, -5), (0, -3), (1, -1), (2, 1), ...
- y = 5 4x (^2, 13), (^1, 9), (0, 5), (1, 1), (2, ^3), ...


Plot the points. Observe that the points lie in a straight line and draw the line. Read other coordinate pairs from the line (including fractional values) and confirm that they also fit the function.

Recognise that a graph of the form y = mx + c:

- corresponds to a straight line, whereas the graph of a linear sequence consists of set of discrete points lying on an 'imagined straight line';
- represents an infinite set of points, and that:
 - the values of the coordinates of each point satisfy the equation represented by the graph;
 - any coordinate pair which represents a point not on the graph does not satisfy the equation.

Plot the graphs of linear functions in the form y = mx + c, on paper and using ICT, and consider their features. For example:

Construct tables of values.
 Plot and interpret graphs such as:
 y = 2x, y = 2x + 1, y = 2x + 4, y = 2x - 2, y = 2x - 5

Describe similarities and differences. Notice that:

- the lines are all parallel to y = 2x;
- the lines all have the same gradient;
- the number (constant) tells you where the line cuts the y-axis (the intercept).

As outcomes, Year 9 pupils should, for example:

Use vocabulary from previous years and extend to: quadratic function, cubic function...

Plot the graphs of linear functions in the form ay + bx + c = 0, on paper and using ICT, and consider their features. For example:

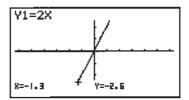
Recognise that linear functions can be rearranged to give y explicitly in terms of x. For example:

- Rearrange y + 2x 3 = 0 in the form y = 3 2x. Rearrange y/4 - x = 0 in the form y = 4x. Rearrange 2y + 3x = 12 in the form $y = \frac{12 - 3x}{2}$.
- Construct tables of values.
 Plot the graphs on paper and using ICT.
 Describe similarities and differences.
- Without drawing the graphs, compare and contrast features of graphs such as:

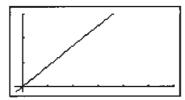
$$y = 3x$$
 $y = 3x + 4$ $y = x + 4$
 $y = x - 2$ $y = 3x - 2$ $y = -3x + 4$

© Crown copyright 2001 Y789 examples 165

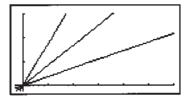
ALGEBRA


Pupils should be taught to:

Generate points and plot graphs of functions (continued)


As outcomes, Year 7 pupils should, for example:

Recognise that equations of the form y = mx correspond to straight-line graphs through the origin.


• Use a **graphical calculator** to plot a straight-line graph through the origin, trace along it, and read off the coordinates. Describe the relationship between the values for x and the values for y.

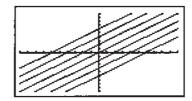
• Draw the graph of y = x.

Draw the graph of a line that is steeper. Draw the graph of a line that is less steep.

Recognise that equations of the form y = c, where c is constant, correspond to straight-line graphs parallel to the x-axis, and that equations of the form x = c correspond to straight-line graphs parallel to the y-axis.

166 Y789 examples © Crown copyright 2001

As outcomes, Year 8 pupils should, for example:


Recognise that equations of the form y = mx + c correspond to straight-line graphs.

Use a **graphical calculator** to investigate the family of straight lines y = mx + c.

• Draw the graphs of:

$$y = x + 1$$
 $y = x + 2$ $y = x + 3$
 $y = x - 1$ $y = x - 2$ $y = x - 3$
escribe what the value of m represents

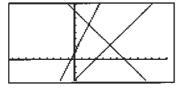
Describe what the value of m represents. Describe what the value of c represents.

• Use a **graphical calculator** and knowledge of the graph of y = mx + c to explore drawing lines through:

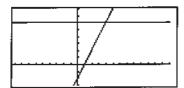
$$(-7, 0)$$
 and $(0, 7)$

$$(-3, 0)$$
 and $(0, 6)$

$$(0, -8)$$
 and $(8, 0)$


Know and explain the reasons for these properties of functions of the form y = mx + c:

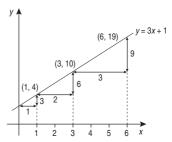
- they are all straight lines;
- for a given value of c, all lines pass through the point (0, c) on the y-axis;
- all lines with the same given value of m are parallel.


Use knowledge of these properties to find the equations of straight-line graphs.

For example, use a **graphical calculator** to:

• Find the equations of these straight-line graphs.

 Find some more straight lines that pass through the point (4, 6).

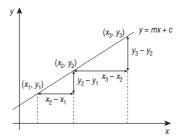


As outcomes, Year 9 pupils should, for example:

Given values for m and c, find the gradient of lines given by equations of the form y = mx + c.

Compare changes in y with corresponding changes in x, and relate the changes to a graph of the function. For example:

•
$$y = 3x + 1$$


$$\frac{\text{change in y}}{\text{change in x}} = \frac{4-1}{1-0} = \frac{10-4}{3-1} = \frac{19-10}{6-3} = 3$$

Recognise that:

- the change in y is proportional to the change in x;
- the constant of proportionality is 3;
- triangles in the diagram are mathematically similar, i.e. enlargements of a basic triangle.

Know that for any linear function, the change in y is proportional to the corresponding change in x. For example, if A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) are any three points on the line y = mx + c, then

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_3 - y_2}{x_3 - x_2} = m$$

Know that for the straight line y = mx + c:

- $m = \frac{\text{change in } y}{\text{change in } x}$
- m is called the gradient of the line and is a measure of the steepness of the line;
- if y decreases as x increases, m will be negative;
- lines parallel to the x-axis, e.g. y = 3, have gradient 0, and for lines parallel to the y-axis, e.g. x = 7, it is not possible to specify a gradient.

Link to properties of linear sequences (pages 148-9), proportionality (pages 78-81), enlargements (pages 212-15), and trigonometry (pages 242-7).