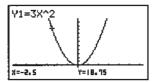
As outcomes, Year 8 pupils should, for example:


As outcomes, Year 9 pupils should, for example:

Generate points and plot the graphs of simple quadratic or cubic functions, on paper or using ICT. For example:

Construct tables of values, including negative values of x, and plot the graphs of these functions:

- $y = x^2$
- $y = 3x^2 + 4$
- $y = x^3$

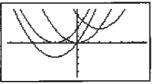
Use a **graphical calculator** to plot the graph of, for example, $y = 3x^2$. Trace along it. Read coordinates. Describe the relationship between the values for x and the values for y.

Use a **graphical calculator** to explore the effect of changing the values of the parameters a and c in the following functions:

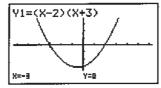
- $y = x^2 + C$
- $y = X^3 + C$
- $y = ax^2$

Construct a table of values and plot the graph of a general quadratic function. For example:

• $y = 2x^2 - 3x + 4$


Х	-2	-1	0	1	2	3	4
X 2	4	1	0	1	4	9	16
2x2	8	2	0	2	8	18	32
-3 <i>x</i>	6	3	0	-3	-6	-9	-12
+4	4	4	4	4	4	4	4
У	18	9	4	3	6	13	24

Recognise that (1, 3) is not the lowest point on the graph. Identify the axis of symmetry.


Use a **graphical calculator** to investigate graphs of functions of the form $y = ax^2 + bx + c$, for different values of a, b and c.

• Investigate families of curves such as:

$$y = ax^{2}$$

 $y = (x + b)^{2}$
 $y = x^{2} + c$
 $y = (x + b)^{2} + c$

$$y = (x + a)(x + b)$$

Link to properties of quadratic functions (pages 162–3).