As outcomes, Year 8 pupils should, for example:

As outcomes, Year 9 pupils should, for example:

Use vocabulary from previous year and extend to: prime factor decomposition...

Apply tests of divisibility for 12, 15, 18... by applying two simpler tests. For example, for:

- 15 the number is divisible by 3 and divisible by 5;
- 18 the number is even and divisible by 9.

Use a **calculator** to explore divisibility. For example:

• Is 2003 a prime number?

2003/7	286.1428571
2003/11 2003/13	
	182.0909091
	154.0769231

Find the prime factor decomposition of a number.

Use factor trees to find prime factors and write non-prime numbers as the products of prime factors. For example, $24 = 2 \times 2 \times 2 \times 3 = 2^3 \times 3$.

$$18 = 2 \times 3 \times 3$$
$$= 2 \times 3^2$$

$$12 = 2 \times 2 \times 3$$
$$= 2^2 \times 3$$

Divide by prime numbers, in ascending order, to find all the prime factors of a non-prime number. Write the number as a product of prime factors.

2	24
2	12
2	6
3	3
	1

$$24 = 2 \times 2 \times 2 \times 3$$

= $2^3 \times 3$ 180

$$= 2 \times 2 \times 3 \times 3 \times 5$$
$$= 2^2 \times 3^2 \times 5$$

Use factors when appropriate to calculate, as in:

$$64 \times 75 = 64 \times 25 \times 3$$
 $\sqrt{576} = \sqrt{(3 \times 3 \times 8 \times 8)}$
= 1600×3 = 3×8
= 4800 = 24

Link to cancelling fractions (pages 60-3).