As outcomes, Year 8 pupils should, for example:

### Convert decimals to fractions.

Continue to recognise that each terminating decimal is a fraction. For example,  $0.237 = \frac{237}{1000}$ .

Recognise that a recurring decimal is a fraction.

Convert decimals (up to three decimal places) to fractions. For example:

• Convert 0.625 to 625/1000 and then cancel to 5%.

Link to percentages (pages 70-1).

### Convert fractions to decimals.

Use division to convert a fraction to a decimal, without and with a calculator. For example:

Use short division to work out that:

$$\frac{1}{5} = 0.2$$
  $\frac{3}{8} = 0.375$   $\frac{27}{8} = \dots$   $\frac{3}{7} = \dots$ 

• Use a **calculator** to work out that  $\frac{7}{53} = \dots$ 

Investigate fractions such as  $\frac{1}{3}$ ,  $\frac$ 

 Predict what answers you will get when you use a calculator to divide:

3 by 3, 4 by 3, 5 by 3, 6 by 3, and so on.

### Order fractions.

Compare and order fractions by converting them to fractions with a common denominator or by converting them to decimals. For example, find the larger of 1/16 and 1/16:

• using common denominators:

7/8 is 35/40, 4/5 is 32/40, so 7/8 is larger.

• using decimals:

<sup>7</sup>/<sub>8</sub> is 0.875, <sup>4</sup>/<sub>5</sub> is 0.8, so <sup>7</sup>/<sub>8</sub> is larger.

Use equivalent fractions or decimals to position fractions on a number line. For example:

 Mark fractions such as <sup>2</sup>/<sub>5</sub>, <sup>4</sup>/<sub>20</sub>, <sup>3</sup>/<sub>15</sub>, <sup>18</sup>/<sub>12</sub> on a number line graduated in tenths, then on a line graduated in hundredths.

Answer questions such as:

- Which is greater, 0.23 or 3/16?
- Which fraction is exactly half way between 3/5 and 5/7?

As outcomes, Year 9 pupils should, for example:

## Know that a recurring decimal is an exact fraction.

Know and use simple conversions for recurring decimals to fractions. For example:

- 0.333 333... = ½ (= ½)
- 0.666666... = <sup>2</sup>/<sub>3</sub>
- 0.1111111... = 1/9
- 0.999999... = % = 1

# Convert recurring decimals to fractions in simple cases, using an algebraic method. For example:

z = 0.333333... (1) 10z = 3.333333... (2)

Subtracting (1) from (2) gives:

9z = 3 $z = \frac{1}{3}$ 

• Comment on:

z = 0.9999999...

10z = 9.999 999...

9z = 9

z = 1

## Order fractions.

Answer auestions such as:

- The numbers ½, a, b, ¾ are in increasing order of size. The differences between successive numbers are all the same. What is the value of b?
- z is a decimal with one decimal place.
   Write a list of its possible values, if both these conditions are satisfied:

$$\frac{1}{3} < Z < \frac{2}{3}$$
  $\frac{1}{6} < Z < \frac{5}{6}$ 

### Link to inequalities (pages 112-13).

Order fractions by graphing them.
Compare gradients.



## Link to gradients (page 167-9).

Investigate sequences such as:

Investigate what happens as the sequence continues and n tends towards infinity.

Convert the fractions to decimals or draw a graph of the decimal against the term number.