CALCULATIONS

Pupils should be taught to:

Consolidate understanding of the operations of multiplication and division, their relationship to each other and to addition and subtraction; know how to use the laws of arithmetic (continued)

As outcomes, Year 7 pupils should, for example:

When dividing using a **calculator**, interpret the quotient in the context of a problem involving money, metric measures or time.

3.05

For example, depending on the context:

- A display of '3.05' could mean £3.05,
 3 kilograms and 50 grams, or 3 hours and 3 minutes.
- A display of '5.2' could mean £5.20,
 5 metres and 20 centimetres, or 5 hours and 12 minutes.

Relate division to fractions. Understand that:

- $\frac{1}{4}$ of 3.6 is equivalent to 3.6 ÷ 4.
- $7 \div 8$ is equivalent to $\frac{7}{8}$.
- 50% is equivalent to $50 \div 3$.

See Y456 examples (pages 54-7).

Link to finding fractions of numbers (pages 66-7).

Know how to use the **laws of arithmetic** to support efficient and accurate mental and written calculations, and calculations with a **calculator**.

Examples of commutative law

$$4 \times 7 \times 5 = 4 \times 5 \times 7 = 20 \times 7 = 140$$

or $= 7 \times 5 \times 4 = 35 \times 4 = 140$

To find the area of a triangle, base 5 cm and height 6cm: area = $\frac{1}{2} \times 5 \times 6 = \frac{1}{2} \times 6 \times 5 = 3 \times 5 = 15$ cm²

Example of associative law

$$15 \times 33 = (5 \times 3) \times 33 \text{ or } 5 \times (3 \times 33) = 5 \times 99 = 495$$

Example of distributive law

$$3.7 \times 99 = 3.7 \times (100 - 1)$$

= $(3.7 \times 100) - (3.7 \times 1)$
= $370 - 3.7$
= 366.3

Link to algebraic operations (pages 114–17), and mental calculations (pages 92–7).

Inverses

Understand that addition is the inverse of subtraction, and multiplication is the inverse of division. For example:

- Put a number in a calculator. Add 472 (or multiply by 26).
 What single operation will get you back to your starting number?
- Fill in the missing number: $(\square \times 4) \div 8 = 5$.

Use inverses to check results. For example:

• $703 \div 19 = 37$ appears to be about right, because $36 \times 20 = 720$.

Link to inverse operations in algebra (pages 114–15), and checking results (pages 110–11).