CALCULATIONS

Pupils should be taught to:

Know and use the order of operations, including brackets

As outcomes, Year 7 pupils should, for example:

Use, read and write, spelling correctly: order of operations, brackets...

Know the conventions that apply when evaluating expressions:

- Contents of brackets are evaluated first.
- In the absence of brackets, multiplication and division take precedence over subtraction and addition.
- A horizontal line acts as a bracket in expressions such as $\frac{5+6}{2}$ or $\frac{a+b}{5}$.

brackets , powers or indices

multiplication (including 'of') and division

addition and subtraction

 With strings of multiplications and divisions, or strings of additions and subtractions, and no brackets, the convention is to work from left to right, e.g.
 12 ÷ 4 ÷ 2 = 1.5, not 6.

Calculate with mixed operations. For example:

- Find mentally or use jottings to find the value of:
 - a. $16 \div 4 + 8$ = 12
 - b. $16 + 8 \div 4 = 18$
 - c. $14 \times 7 + 8 \times 11 = 186$
 - d. $\frac{100}{4 \times 5}$ = 5
 - Θ . 32 + 13 × 5 = 97
 - f. $(3^2 + 4^2)^2 = 625$
 - g. $(5^2 7)/(2^2 1) = 6$
- Use a **calculator** to calculate with mixed operations, e.g. $(32 + 13) \times (36 5) = 1395$
- In algebra recognise that, for example, when a = 4, $3a^2 = 3 \times 4^2 = 3 \times 16 = 48$

Link to calculator methods (pages 108-9), order of algebraic operations (pages 114-15), and substitution in expressions and formulae (pages 138-41).

As outcomes, Year 8 pupils should, for example:

Use vocabulary from previous year.

Recognise that, for example:

$$\frac{100}{4 \times 5} = 100 \div 4 \div 5 = 5$$

or
$$\frac{a}{b \times c} = a \div (b \times c)$$
 or $a \div b \div c$

Calculate with more complex mixed operations, including using the bracket keys on a calculator. For example:

- Find the value of:
 - a. 2.1 (3.5 + 2.1) + (5 + 3.5) = 5

b.
$$\frac{(2+3)^2}{(14-9)^2} = \frac{5^2}{5^2} = 1$$

- Find, to two decimal places, the value of:

 - a. (5.5 + 2)/7 = 1.07 to 2 d.p. b. $\frac{8+4}{13-2} = 1.09$ to 2 d.p.
 - c. $\frac{25}{6 \times 93}$ = 0.04 to 2 d.p.
 - d. $\sqrt{(26^2 14^2)} = 21.91$ to 2 d.p.

Evaluate expressions using nested brackets, such as: $120 \div \{30 - (2 - 7)\}\$

Understand that the position of the brackets is important. For example:

Make as many different answers as possible by putting brackets into the expression

$$3 \times 5 + 3 - 2 \times 7 + 1$$

For example:

- a. $3 \times (5+3) (2 \times 7) + 1 = 11$
- b. $3 \times (5+3) 2 \times (7+1) = 8$
- C. $(3 \times 5) + 3 (2 \times 7) + 1 = 5$
- d. $(3 \times 5) + (3 2) \times 7 + 1 = 23$
- $(3 \times 5) + (3 2) \times (7 + 1) = 23$
- f. $(3 \times 5) + 3 (2 \times 7 + 1) = 3$

Link to calculator methods (pages 108-9), order of algebraic operations (pages 114-15), substitution in expressions and formulae (pages 138-41).

As outcomes, Year 9 pupils should, for example:

Use vocabulary from previous years.

Understand the effect of powers when evaluating an expression. For example:

- Find the value of:
 - a. $36 \div (3+9) 7 + 3 \times (8 \div 2)^3 = 188$ b. $\frac{7 \times 8^2}{7 \times 2} = \frac{8^2}{2} = 32$

 - C. $\frac{(7 \times 8)^2}{7 \times 2} = \frac{7 \times 8 \times 7 \times 8}{7 \times 2} = 7 \times 8 \times 4 = 224$
 - $d_{1} 7^{2} + 5 = ^{-}44$

 - e. $(-7)^2 + 5 = 54$ f. $(4/3)^2 = 4^2 \div 3^2 = \frac{16}{9} = \frac{17}{9}$

Calculate with more complex mixed operations, including using the bracket keys on a calculator. For example:

Find the value of:

$$-(251 \times 3 + 281) + 3 \times 251 - (1 - 281) = ^{-1}$$

• Find, to two decimal places, the value of:

a.
$$\frac{(12-5)^2(7-3)^2}{(8-5)^3} = \frac{7^2 \times 4^2}{3^3} = 29.04 \text{ to } 2 \text{ d.p.}$$

b.
$$\frac{(16-9)^2(17-15)^2}{3(16-11)^3} = \frac{7^2 \times 2^2}{3 \times 5^3} = 0.52 \text{ to 2 d.p.}$$

- In algebra recognise that when a = 2,
 - a. $3a^2 9 = 3(2^2) 9 = 3$
 - b. $3(a^2-9) = 3(4-9) = -15$
 - c. $(3a)^2 9 = 6^2 9 = 27$

Recognise that $(\bar{a})^2 \neq -\bar{a}^2$.

Link to calculator methods (pages 108-9), order of algebraic operations (pages 114-15), substitution in expressions and formulae (pages 138-41).