NUMBERS AND THE NUMBER SYSTEM

Pupils should be taught to:

Understand and use decimal notation and place value; multiply and divide integers and decimals by powers of 10

As outcomes, Year 7 pupils should, for example:

Use, read and write, spelling correctly: place value, zero place holder, tenth, hundredth, thousandth... equivalent, equivalence...

Understand and use decimal notation and place value. Read and write any number from 0.001 to 1 000000, knowing what each digit represents. For example, know that:

- In 5.239 the digit 9 represents nine thousandths, which is written as 0.009.
- The number 5.239 in words is 'five point two three nine', not 'five point two hundred and thirty-nine'.
- The fraction 5²³⁹/₁₀₀₀ is read as `five and two hundred and thirty-nine thousandths'.

Know the significance of 0 in 0.35, 3.05, 3.50, and so on.

Know that decimals used in context may be spoken in different ways. For example:

- 1.56 is spoken in mathematics as 'one point five six'.
- £1.56 is spoken as 'one pound fifty-six'.
- £1.06 is spoken as 'one pound and six pence'.
- £0.50 is spoken as 'fifty pence'.
- 1.56 km is sometimes spoken as 'one kilometre, five hundred and sixty metres'.
- 3.5 hours can be spoken as 'three and a half hours' or 'three hours and thirty minutes'.

Answer questions such as:

- Write in figures:
 - four hundred and three thousand, and seventeen.
- Write in words: 4.236, 0.5, 35.08, ...
- Write as a decimal the fraction six, and two hundred and forty-three thousandths.
- Make the largest and smallest number you can using: the digits 2, 0, 3, 4; the digits 2, 0, 3, 4, and a decimal point.

Add or subtract 0.1 and 0.01 to or from any number.

Count forwards or backwards from any number. For example:

- Count on in 0.1s from 4.5.
- Count back from 23.5 in 0.1s.
- Count on in 0.01s from 4.05.

Answer questions such as:

- What is 0.1 less than 2.0? What is 0.01 more than 2.09?
- What needs to be added or subtracted to change: 27.48 to 37.48, 27.48 to 27.38, 27.48 to 26.38? 5.032 to 5.037, 5.032 to 5.302?

See Y456 examples (pages 2-5, 28-9).

36 Y789 examples © Crown copyright 2001

Place value, ordering and rounding

As outcomes, Year 8 pupils should, for example:

Use vocabulary from previous year and extend to: billion, power, index...

Read and write positive integer powers of 10.

Know that:

 $10 \times 10 = 10^2$ 1 hundred is $10 \times 10 \times 10 = 10^3$ 1 thousand is 10 thousand is $10 \times 10 \times 10 \times 10 = 10^4$, etc.

106

1 million is

1 billion is 10°, one thousand

millions

(In the past, 1 billion was 10¹², one million millions,

in the UK.)

Recognise that successive powers of 10 (i.e. 10, 10², 10³, ...) underpin decimal (base 10) notation.

Read numbers in standard form, e.g. read 7.2×10^3 as 'seven point two times ten to the power three'.

Link to using index notation (pages 56-9).

Add or subtract 0.001 to or from any number.

Answer questions such as:

 What is 0.001 more than 3.009? What is 0.001 more than 3.299? What is 0.002 less than 5? What is 0.005 less than 10?

• What needs to be added or subtracted to change: 4.257 to 4.277? 6.132 to 6.139?

As outcomes, Year 9 pupils should, for example:

Use vocabulary from previous years and extend to: standard (index) form... exponent...

Extend knowledge of integer powers of 10.

Know that:

 $10^{\circ} = 1$ $10^{-1} = 1/10^{1} = \frac{1}{10}$ $10^{-2} = 1/10^2 = \frac{1}{100}$ $10^1 = 10$

Know the prefixes associated with powers of 10. Relate to commonly used units. For example:

giga 10-2 centi 10-3 106 mega milli 10^{3} 10-6 kilo micro 10-9 nano 10⁻¹² pico

Know the term standard (index) form and read numbers such as 7.2×10^{-3} .

Link to using index notation (pages 56-9) and writing numbers in standard form (pages 38-9).

Know that commonly used units in science, other subjects and everyday life are:

kilogram (kg) – SI unit		metre (m) – SI unit	
gram (g)	kilometre (km)		litre (I)
milligram (mg)	millimetre (mm)		millilitre (ml)

37 © Crown copyright 2001 Y789 examples

NUMBERS AND THE NUMBER SYSTEM

Pupils should be taught to:

Understand and use decimal notation and place value; multiply and divide integers and decimals by powers of 10 (continued)

As outcomes, Year 7 pupils should, for example:

Multiply and divide numbers by 10, 100 and 1000.

Investigate, describe the effects of, and explain multiplying and dividing a number by 10, 100, 1000, e.g. using a place value board, **calculator** or **spreadsheet**.

In particular, recognise that:

- Multiplying a positive number by 10, 100, 1000... has the effect of increasing the value of that number.
- Dividing a positive number by 10, 100, 1000... has the effect of decreasing the value of that number.
- When a number is multiplied by 10, the digits move one place to the left:

• When a number is divided by 10, the digits move one place to the right:

Complete statements such as:

$$4 \times 10 = \square$$
 $4 \times \square = 400$
 $4 \div 10 = \square$ $4 \div \square = 0.04$
 $0.4 \times 10 = \square$ $0.4 \times \square = 400$
 $0.4 \div 10 = \square$ $0.4 \div \square = 0.004$
 $\square \div 100 = 0.04$ $\square \div 10 = 40$
 $\square \times 1000 = 40000$ $\square \times 10 = 400$

See Y456 examples (pages 6-7).

Link to converting mm to cm and m, cm to m, m to km... (pages 228–9).

38 Y789 examples © Crown copyright 2001

As outcomes, Year 8 pupils should, for example:

Multiply and divide numbers by 0.1 and 0.01.

Investigate, describe the effects of, and explain multiplying and dividing a number by 0.1 and 0.01, e.g. using a **calculator** or **spreadsheet**.

In particular, recognise how numbers are increased or decreased by these operations.

0.1 is equivalent to $\frac{1}{100}$ and 0.01 is equivalent to $\frac{1}{100}$, so:

- Multiplying by 0.1 has the same effect as multiplying by ½0 or dividing by 10. For example, 3 × 0.1 has the same value as 3 × ½0, which has the same value as 3 ÷ 10 = 0.3, and 0.3 × 0.1 has the same value as ¾0 × ½0 = ¾00 = 0.03.
- Multiplying by 0.01 has the same effect as multiplying by 1/100 or dividing by 100. For example, 3 × 0.01 has the same value as 3 × 1/100, which has the same value as 3 ÷ 100 = 0.03, and 0.3 × 0.01 has the same value as 3/10 × 1/100 = 3/1000 = 0.003.
- Dividing by 0.1 has the same effect as dividing by ½0 or multiplying by 10. For example, 3 ÷ 0.1 has the same value as 3 ÷ ½0.
 (How many tenths in three? 3 × 10 = 30) 0.3 ÷ 0.1 has the same value as ¾0 ÷ ½0.
 (How many tenths in three tenths? 0.3 × 10 = 3)
- Dividing by 0.01 has the same effect as dividing by ½00 or multiplying by 100. For example, 3 ÷ 0.01 has the same value as 3 ÷ ½00. (How many hundredths in three? 3 x 100 = 300) 0.3 ÷ 0.01 has the same value as ¾0 ÷ ½00. (How many hundredths in three tenths? 0.3 x 100 = 30)

Complete statements such as:

$$0.5 \times 0.1 = \square$$
 $0.8 \times \square = 0.08$ $0.7 \div 0.1 = \square$ $0.6 \div \square = 6$

Understand a diagrammatic explanation to show, for example, that $0.1 \times 0.5 = 0.05$, or $0.24 \div 0.6 = 0.4$.

Discuss the effects of multiplying and dividing by a number less than 1.

- Does division always make a number smaller?
- Does multiplication always make a number larger?

As outcomes, Year 9 pupils should, for example:

Multiply and divide by any integer power of 10.

For example:

Calculate:

$37.4 \div 100$
$3.7 \div 1000$
4982 ÷ 10000
$0.27 \div 0.1$
$5.96 \div 0.01$

Link to converting mm² to cm², cm² to m², mm³ to cm³ and cm³ to m³ (pages 228–9).

Begin to write numbers in standard form, expressing them as

 $A \times 10^n$ where $1 \le A < 10$, and n is an integer.

For example:

```
734.6 = 7.346 \times 10^{2}

0.0063 = 6.3 \times 10^{-3}
```

Know how to use the `EXP' key on a **calculator** to convert from index form.

Answer questions such as:

• Complete these. The first is done for you.

 $3 \times 10^{n} = 300 \times 10^{n-2}$

 $0.3 \times 10^{n} = 30000 \times \square$

 $0.3 \times 10^{n} = 0.0003 \times \square$

 $3 \div 10^{\circ} = 0.003 \times \square$

 $0.3 \div 10^{\circ} = 300 \times \square$

 $0.003 \div 10^{n} = 3 \times \square$

• Put these numbers in ascending order:

 2×10^{-2} , 3×10^{-1} , 2.5×10^{-3} , 2.9×10^{-2} , 3.2×10^{-1}

- Write these numbers in standard form:
 - a. The population of the UK is 57 million.
 - b. The dwarf pigmy goby fish weighs 0.000 14oz.
 - c. The shortest millipede in the world measures 0.082 inches.
 - d. After the Sun, the nearest star is 24800000000000000000000 miles away.
- The probability of dying before the age of 40 is 1 in 850, or 0.00118, or 1.8×10^{-3} .

These are the risks of dying from particular causes:

smoking 10 cigarettes a day 1 in 200 road accident 1 in 8000 accident at home 1 in 260 000 railway accident 1 in 500000

Write each of these as a probability in standard form.

Link to writing numbers in standard form in science and geography.

© Crown copyright 2001 Y789 examples 39